Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 51(4): 2772-2787, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37921396

ABSTRACT

BACKGROUND: A compact PET/SPECT/CT system Inliview-3000B has been developed to provide multi-modality information on small animals for biomedical research. Its PET subsystem employed a dual-layer-offset detector design for depth-of-interaction capability and higher detection efficiency, but the irregular design caused some difficulties in calculating the normalization factors and the sensitivity map. Besides, the relatively larger (2 mm) crystal cross-section size also posed a challenge to high-resolution image reconstruction. PURPOSE: We present an efficient image reconstruction method to achieve high imaging performance for the PET subsystem of Inliview-3000B. METHODS: List mode reconstruction with efficient system modeling was used for the PET imaging. We adopt an on-the-fly multi-ray tracing method with random crystal sampling to model the solid angle, crystal penetration and object attenuation effect, and modify the system response model during each iteration to improve the reconstruction performance and computational efficiency. We estimate crystal efficiency with a novel iterative approach that combines measured cylinder phantom data with simulated line-of-response (LOR)-based factors for normalization correction before reconstruction. Since it is necessary to calculate normalization factors and the sensitivity map, we stack the two crystal layers together and extend the conventional data organization method here to index all useful LORs. Simulations and experiments were performed to demonstrate the feasibility and advantage of the proposed method. RESULTS: Simulation results showed that the iterative algorithm for crystal efficiency estimation could achieve good accuracy. NEMA image quality phantom studies have demonstrated the superiority of random sampling, which is able to achieve good imaging performance with much less computation than traditional uniform sampling. In the spatial resolution evaluation based on the mini-Derenzo phantom, 1.1 mm hot rods could be identified with the proposed reconstruction method. Reconstruction of double mice and a rat showed good spatial resolution and a high signal-to-noise ratio, and organs with higher uptake could be recognized well. CONCLUSION: The results validated the superiority of introducing randomness into reconstruction, and demonstrated its reliability for high-performance imaging. The Inliview-3000B PET subsystem with the proposed image reconstruction can provide rich and detailed information on small animals for preclinical research.


Subject(s)
Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Rats , Mice , Animals , Reproducibility of Results , Positron-Emission Tomography/methods , Computer Simulation , Phantoms, Imaging , Algorithms , Image Processing, Computer-Assisted/methods
2.
Front Med (Lausanne) ; 10: 1145351, 2023.
Article in English | MEDLINE | ID: mdl-37448793

ABSTRACT

Purpose: Single-photon emission computed tomography (SPECT) is an important tool for myocardial perfusion imaging (MPI). Mechanical collimators cause the resolution-sensitivity trade-off in the existing cardiac SPECT systems, which hinders fast cardiac scan capability. In this work, we propose a novel collimator-less cardiac SPECT system with interspaced mosaic-patterned scintillators, aiming to significantly improve sensitivity and reduce scan time without trading-off image resolution. Methods: We propose to assemble a collimator-less cardiac SPECT with 7 mosaic-patterned detector modules forming a half-ring geometry. The detector module consists of 10 blocks, each of which is assembled with 768 sparsely distributed scintillators with a size of 1.68 mm × 1.68 mm × 20 mm, forming a mosaic pattern in the trans-axial direction. Each scintillator bar contains 5 GAGG(Ce) scintillators and 5 optical-guide elements, forming a mosaic pattern in the axial direction. In the Monte Carlo simulations, the in-plane resolution and axial resolution are evaluated using a hot-rod phantom and 5 disk phantoms, respectively. We simulate a cardiac phantom that is placed in a water-filled cylinder and evaluate the image performance with different data acquisition time. We perform image reconstruction with the expectation-maximization algorithm using system matrices derived from the simulation of a uniform cylindrical source filling the field-of-view (FOV). Besides, a 2-D prototype system is designed to demonstrate the feasibility of the collimator-less imaging concept. Results: In the simulation system, the sensitivity is 16.31% ± 8.85% in a 180 mm (Φ) × 100 mm (L) FOV. The 6-mm rods in the hot rod phantom and the 5-mm disks in the disk phantom are clearly separable. Satisfactory MPI image quality is achieved in the cardiac phantom study with an acquisition time of 30 s. In prototype experiments, the point sources with an 8 mm center-to-center distance are clearly separable at different positions across the FOV. Conclusion: The study reveals a promising approach to high-sensitivity SPECT imaging without a heavy-metal collimator. In cardiac imaging, this approach opens the way to a very fast cardiac scan with good resolution. Further works are ongoing to build a practical 3-D imaging system based on the existing design.

3.
IEEE Trans Med Imaging ; 42(9): 2787-2801, 2023 09.
Article in English | MEDLINE | ID: mdl-37037258

ABSTRACT

We have recently reported a self-collimation SPECT (SC-SPECT) design concept that constructs sensitive detectors in a multi-ring interspaced mosaic architecture to simultaneously improve system spatial resolution and sensitivity. In this work, through numerical and Monte-Carlo simulation studies, we investigate this new design concept by analyzing its projection probability density functions (PPDF) and the effects of enhanced sampling, i.e. having rotational and translational object movements during imaging. We first quantitatively characterize PPDFs by their widths and edge slopes. Then we compare the PPDFs of an SC-SPECT and a series of multiple-pinhole SPECT (MPH-SPECT) systems and assess the impact of PPDFs - combined with enhanced sampling - on image contrast recovery coefficient and variance through phantom studies. We show the PPDFs of SC- SPECT have steeper edges and a wider range of width, and these attributes enable SC-SPECT to achieve better performance.


Subject(s)
Tomography, Emission-Computed, Single-Photon , Tomography, Emission-Computed, Single-Photon/methods , Phantoms, Imaging , Computer Simulation , Monte Carlo Method , Probability
4.
Sensors (Basel) ; 23(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36904898

ABSTRACT

Gamma imagers play a key role in both industrial and medical applications. Modern gamma imagers typically employ iterative reconstruction methods in which the system matrix (SM) is a key component to obtain high-quality images. An accurate SM could be acquired from an experimental calibration step with a point source across the FOV, but at a cost of long calibration time to suppress noise, posing challenges to real-world applications. In this work, we propose a time-efficient SM calibration approach for a 4π-view gamma imager with short-time measured SM and deep-learning-based denoising. The key steps include decomposing the SM into multiple detector response function (DRF) images, categorizing DRFs into multiple groups with a self-adaptive K-means clustering method to address sensitivity discrepancy, and independently training separate denoising deep networks for each DRF group. We investigate two denoising networks and compare them against a conventional Gaussian filtering method. The results demonstrate that the denoised SM with deep networks faithfully yields a comparable imaging performance with the long-time measured SM. The SM calibration time is reduced from 1.4 h to 8 min. We conclude that the proposed SM denoising approach is promising and effective in enhancing the productivity of the 4π-view gamma imager, and it is also generally applicable to other imaging systems that require an experimental calibration step.

5.
Sensors (Basel) ; 23(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36679750

ABSTRACT

(1) Background: Gamma cameras have wide applications in industry, including nuclear power plant monitoring, emergency response, and homeland security. The desirable properties of a gamma camera include small weight, good resolution, large field of view (FOV), and wide imageable source energy range. Compton cameras can have a 4π FOV but have limited sensitivity at low energy. Coded-aperture gamma cameras are operatable at a wide photon energy range but typically have a limited FOV and increased weight due to the thick heavy metal collimators and shielding. In our lab, we previously proposed a 4π-view gamma imaging approach with a 3D position-sensitive detector, with which each detector element acts as the collimator for other detector elements. We presented promising imaging performance for 99mTc, 18F, and 137Cs sources. However, the imaging performance for middle- and high-energy sources requires further improvement. (2) Methods: In this study, we present a new gamma camera design to achieve satisfactory imaging performance in a wide gamma energy range. The proposed gamma camera consists of interspaced bar-shaped GAGG (Ce) crystals and tungsten absorbers. The metal bars enhance collimation for high-energy gamma photons without sacrificing the FOV. We assembled a gamma camera prototype and conducted experiments to evaluate the gamma camera's performance for imaging 57Co, 137Cs, and 60Co point sources. (3) Results: Results show that the proposed gamma camera achieves a positioning accuracy of <3° for all gamma energies. It can clearly resolve two 137Cs point sources with 10° separation, two 57Co and two 60Co point sources with 20° separation, as well as a 2 × 3 137Cs point-source array with 20° separation. (4) Conclusions: We conclude that the proposed gamma camera design has comprehensive merits, including portability, 4π-view FOV, and good angular resolution across a wide energy range. The presented approach has promising potential in nuclear security applications.


Subject(s)
Gamma Cameras , Metals, Heavy , Equipment Design , Diagnostic Imaging
6.
Appl Radiat Isot ; 186: 110256, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35533606

ABSTRACT

In single-photon emission computed tomography (SPECT), a micro-sized 99mTc source is routinely used for performance measurement, geometry calibration, and system matrix generation. Therefore, a micro-sized source is critical in nuclear instrument production and quality control. Standard methods can only produce a point source with a large size and low total activity, as they are limited by the concentration of the 99mTc solution. The absorption of 99mTc on ion exchange resins has been used; however, few studies have quantitatively evaluated the absorption process and optimized the source activity. This paper proposes a procedure for producing a micro-sized 99mTc resin source with a super-high concentration, as well as a method for the fast measurement of the point source time-activity curve (TAC). Experiments on two resin point sources with diameters of 0.681 mm and 0.326 mm were carried out. Two semi-empirical models, including the first kinetic model and the pseudo-second-order rate equation model, were used to fit TACs. The results show the first kinetic model fit better, which suggests an acquisition time of 2-4 h is needed for optimization. The verification experiment demonstrates a resin point source with a diameter of 0.35 mm and total activity of 10.6 mCi (i.e., 59.1 Ci/mL concentration) was produced.


Subject(s)
Ion Exchange Resins , Tomography, Emission-Computed, Single-Photon , Calibration , Tomography, Emission-Computed, Single-Photon/methods
7.
IEEE Trans Med Imaging ; 40(8): 2152-2169, 2021 08.
Article in English | MEDLINE | ID: mdl-33852384

ABSTRACT

Conventional single photon emission computed tomography (SPECT) relies on mechanical collimation whose resolution and sensitivity are interdependent, the best performance a SPECT system can attain is only a compromise of these two equally desired properties. To simultaneously achieve high resolution and sensitivity, we propose to use sensitive detectors constructed in a multi-layer in ter spaced mosaicdetectors (MATRICES) architecture to accomplish part of the collimation needed. We name this new approach self-collimation. We evaluate three self-collimating SPECT systems and report their imaging performance: 1) A simulated human brain SPECT achieves 3.88% sensitivity, it clearly resolves 0.5-mm and 1.0-mm hot-rod patterns at noise-free and realistic count-levels, respectively; 2) a simulated mouse SPECT achieves 1.25% sensitivity, it clearly resolves 50- [Formula: see text] and 100- [Formula: see text] hot-rod patterns at noise-free and realistic count-levels, respectively; 3) a SPECT prototype achieves 0.14% sensitivity and clearly separates 0.3-mm-diameter point sources of which the center-to-center neighbor distance is also 0.3 mm. Simulated contrast phantom studies show excellent resolution and signal-to-noise performance. The unprecedented system performance demonstrated by these 3 SPECT scanners is a clear manifestation of the superiority of the self-collimating approach over conventional mechanical collimation. It represents a potential paradigm shift in SPECT technology development.


Subject(s)
Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Animals , Humans , Mice , Phantoms, Imaging , Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...